Multiple Positive Solutions for Second-order Three-point Boundary-value Problems with Sign Changing Nonlinearities
نویسندگان
چکیده
In this article, we study the second-order three-point boundaryvalue problem u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, u′(0) = 0, u(1) = αu(η), where 0 < α, η < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign. We show that there exist two positive solutions by using Leggett-Williams fixed-point theorem.
منابع مشابه
Positive solutions of discrete Neumann boundary value problems with sign-changing nonlinearities
R + →R is a sign-changing function. In recent years, positive solutions of boundary value problems for difference equations have been widely studied. See [–] and the references therein. However, little work has been done that has referred to the existence of positive solutions for discrete boundary value problems with sign-changing nonlinearities (see []). Usually, in order to obtain posit...
متن کاملTriple positive solutions for second-order four-point boundary value problem with sign changing nonlinearities
In this paper, we study the existence of triple positive solutions for second-order four-point boundary value problem with sign changing nonlinearities. We first study the associated Green’s function and obtain some useful properties. Our main tool is the fixed point theorem due to Avery and Peterson. The results of this paper are new and extent previously known results. 2000 Mathematics Subjec...
متن کاملMultiple Positive Solutions for Nonlinear Second-order M-point Boundary-value Problems with Sign Changing Nonlinearities
In this paper, we study the nonlinear second-order m-point boundary value problem u′′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, βu(0)− γu′(0) = 0, u(1) = m−2 X i=1 αiu(ξi), where the nonlinear term f is allowed to change sign. We impose growth conditions on f which yield the existence of at least two positive solutions by using a fixed-point theorem in double cones. Moreover, the associated Green’s function...
متن کاملPositive Solutions of Second Order Boundary Value Problems With Changing Signs Carathéodory Nonlinearities
In this paper we investigate the existence of positive solutions of two-point boundary value problems for nonlinear second order differential equations of the form (py)(t)+ q(t)y(t) = f(t, y(t), y(t)), where f is a Carathéodory function, which may change sign, with respect to its second argument, infinitely many times. 2000 Mathematics Subject Classification: 34B15, 34B18
متن کاملHigher Order Multi-point Boundary Value Problems with Sign-changing Nonlinearities and Nonhomogeneous Boundary Conditions
Abstract. We study classes of nth order boundary value problems consisting of an equation having a sign-changing nonlinearity f(t, x) together with several different sets of nonhomogeneous multi-point boundary conditions. Criteria are established for the existence of nontrivial solutions, positive solutions, and negative solutions of the problems under consideration. Conditions are determined b...
متن کامل